

OFFICE & CLASSES: SKY TUTORIALS : KABIR NAGAR DURGAKUND, VARANASI CONTACT No. : 7510020006, 9696571381

CLASSROOM CONTACT PROGRAMME

(ACADEMIC SESSION 2023-2024)

Class - XII - NEET - 2023

Test Type: Chapter wise Test

Date: 29/09/2023

PHYSICS Instructions

Duration of test 60 min and questions Paper contains **50** *questions. The maximum marks are* **180.** *Section –A contains* **35** *Questions Section B contains* **15** *questions. Please ensure that the Questions paper you have received contains* **ALL THE QUESTIONS** *in each Part.*

PHYSICS Section – A

1. Two point charges A and B, having charges +Q and -Q respectively, are placed at certain distance apart and force acting between them is F. If 25% charge of A is transferred to B, then force between the charges becomes

(a)
$$\frac{9F}{16}$$
 (b) $\frac{9F}{9}$ (c) $\frac{4f}{3}$ (d) F

2. Two particles of equal mass m and charge q are placed at a distance of 16 cm. They do not

experience any force. The value of $\frac{q}{m}$ is

(a)
$$l$$
 (b) $\sqrt{\frac{\mu\varepsilon_0}{G}}$ (c) $\sqrt{\frac{G}{4\pi\varepsilon_0}}$ (d) $\sqrt{4\pi\varepsilon_0 G}$

3. The charge on two shperes are $+7\mu$ C and -5μ C, respectively. They experience a force F. If each of them is given an additional charge of -2μ C, then the new force attraction will be

(a) F (b) F/4 (c) F/
$$\sqrt{3}$$
 (d) 2F

The figure shows some of the electric field lines corresponding to an electric field. The figure suggests

4.

1

(a) $E_A > E_B > E_C$ (b) $E_A > E_B = E_C$ (c) $E_A = E_C > E_B$ (d) $E_B < E_A = E_C$ 5. An uncharged sphere of metal is placed in between two charged plates as shown. The lines of force look like

6. The electric field at a point on the equatorial plane at a distance r form the centre of a dipole having dipole moment p is given by (r >> separation of two charges forming the dipole, ε_0 = permittivity of free space)

(a)
$$E = \frac{P}{4\pi\epsilon_0 r^3}$$
 (b) $E = \frac{2P}{4\pi\epsilon_0 r^3}$
(c) $E = -\frac{P}{4\pi\epsilon_0 r^2}$ (d) $E = -\frac{P}{4\pi\epsilon_0 r^3}$

7. Two plates are 2 cm apart and a potential difference of 10 V is applied between them, then the electric field between the plates is
(a) 20NC⁻¹ (b) 500NC⁻¹ (c) 5NC⁻¹ (d) 250NC⁻¹

29.09.2023

- 8. The electric potential V is given as a function fo distance x (metre) by $V = (5x^2 + 10x - 9) V$. Value of electric field at x = 1 is (a) $-20 Vm^{-1}$ (b) $6 Vm^{-1}$ (c) $11 Vm^{-1}$ (d) $-23 Vm^{-1}$
- 9. The diameter of a hollow metallic sphere is 60 cm and the sphere carries a charge of 500 μ C. The potential at a distance of 100 cm from the centre of the sphere will be

(a) $6 \times 10^7 V$ (b) $7 \times 10^6 V$ (c) $4.5 \times 10^6 V$ (d) $5 \times 10^6 V$

10. For dipole $q = 2 \times 10^{-6}$ C and d = 001 m, calculate the maximum torque for this dipole if $E = 5 \times 10^{5}$ N / C.

(a) 1×10^{-3} N/m (b) 10×10^{-3} N/m (c) 10×10^{-3} N/m (d) 1×10^{2} N/m

11. Three charges Q + q and + q are placed at the vertices of an equilateral triangle of side *l* as shown in the figure. If the net electrostatic energy of the system is zero, then Q is equal to

12. The capacity of a spherical conductor is (a) $\frac{R}{m}$ (b) $\frac{4\pi\varepsilon_0}{m}$ (c) $4\pi\varepsilon_2 R$ (d)

(a) $\frac{R}{4\pi\epsilon_0}$ (b) $\frac{4\pi\epsilon_0}{R}$ (c) $4\pi\epsilon_0 R$ (d) $4\pi\epsilon_0 R^2$

13. Four capacitor of equal capacitance have an equivalent capacitance C_1 when connected in series and an equivalent capacitance C_2 when

connected in parallel. The ratio $\frac{C_1}{C_2}$ is

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{16}$ (c) $\frac{1}{8}$ (d) $\frac{1}{12}$

14. Equivalent capacitance between A and B is

15. Separation between the paltes of a parallel plate capacitor is d and the area of each plate is A. When a slab of material of dielectric constant K and thickness t(t < d) is introduced between the plates, its capacitance becomes

- 16. In a certain region of space with volume 0.2 m³, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is

 (a) 0.5 N/C
 (b) 1 N/C
 (c) 5 N/C
 (d) zero
- 17. A parallel plate capacitor of area A, plate separation d and capacitance C is filled with four dielectric materials having dielectric constants K_1 , K_2 , K_3 and K_4 as shown in the figure below. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant K is given by

(a)
$$K = K_1 + K_2 + K_3 + 3K_4$$

(b) $K = \frac{2}{3}(K_1 + K_2 + K_3) + 2K_4$
(c) $\frac{2}{K} = \frac{3}{K_1 + K_2 + K_3} + \frac{1}{K_4}$

(d)
$$\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_3} + \frac{3}{2K_4}$$

18. The equivalent capacity between points A and B in figure will be, while capacitance of each capacitors is $3\,\mu F$

19. The current through a wire depends on time as $I = 3t^2 + 2t + 5$. The charge flowing through the cross-section of the wire in time interval between t = 0 to t = 2s is

20. Drift velocity v_d varies with the intensity of electric field as per the relation,

(a)
$$v_d \propto E$$
 (b) $v_d \propto \frac{1}{E}$

(c)
$$v_d = constant$$
 (d) $v_d \propto E^2$

27. The equivalent resistance between A and B for the mesh shown in the figure is

- (a) 7.2Ω (b) 16Ω (c) 30Ω (d) 4.8Ω
- **28.** The meter bridge shown in the balance position with $\frac{P}{Q} = \frac{l_1}{l_2}$. If we now interchange the positions of galvanometer and cell, will the bridge work? If yes, that will be balanced condition?

29. The potential difference $(V_A - V_B)$ between the points A and B in the given figure is

$$V_A = 2 \Omega + I \Omega V_B$$

$$I = 2 A$$
(a) -3V (b) +3V (c) +6V (d) +9V

30. Consider the combination of resistor,

- (a) $\frac{R}{6}$ (b) $\frac{2R}{3}$ (c) $\frac{R}{3}$ (d) 3R . An electron revolves in a circle at the rate of 10^{19}
- rounds per second. The equivalent current is ($e = 1.6 \times 10^{-19}$ C) (a) 1.0 A (b) 1.6 A (c) 2.0 A (d) 2.6 A
- **32.** A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of solenoid is

(Take, $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T\,m\,A^{-1}}$)

(a) $3.14 \times 10^{-4} \mathrm{T}$	(b) $6.28 \times 10^{-5} \mathrm{T}$
(c) 3.14×10^{-5} T	(d) $6.28 \times 10^{-4} \mathrm{T}$

33. A long wire having a semicircular loop of radius r carries a current *i* as shown in figure. The magnetic induction at the centre O due to entire wire is

3

34. In the given figure, what is the magnitude field induction at point O?

- **35.** Equal currents are passing through two very long and straight parallel wires in the same direction. They will
 - (a) attract each other
 - (b) repel each other
 - (c) lean towards each other
 - (d) Neither attract nor repel each other

Section – B

36. Two similar coils of radius R are lying concentrically with their planes at right angles to each other. The current flowing in them are I and 2I, respectively. The resultant magnetic field induction at the centre will be

(a)
$$\frac{\sqrt{5}\mu_0 I}{2R}$$
 (b) $\frac{3\mu_0 I}{2R}$ (c) $\frac{\mu_0 I}{2R}$ (d) $\frac{\mu_0 I}{R}$

- 37. The effective length of magnet is 31.4 cm and its pole strength is 0.8 Am. The magnetic moment, if it is bent in the form of a semicircle is A-m². (a) 1.2 (b) 1.6 (c) 0.16 (d) 0.12
- **38.** A magnetic wire of dipole moment $4\pi A m^2$ is bent in the form of semicircle. The new magnetic moment is

(a)
$$4\pi A - m^2$$
 (b) $8A - m^2$

- (c) 4 A-m² (d) None of these
- **39.** The magnetic flux linked with a vector area **A** in a uniform magnetic field **B** is

(a)
$$\mathbf{B} \times \mathbf{A}$$
 (b) AB (c) $\mathbf{B} \cdot \mathbf{A}$ (d) $\frac{\mathbf{B}}{\mathbf{A}}$

40. The magnetic flux ϕ (in weber) in a closed circuit of resistance 10Ω varies with time t (in second) according to equation $\phi = 6t^2 - 5t + 1$. The magnitude of induced current at t = 0.25 s is (a) 1.2 A (b) 0.8 A (c) 0.6 A (d) 0.2 A

41. A conducting rod of length l is falling with a constant velocity v perpendicular to a uniform horizontal magnetic field B. A potential difference between its two ends will be

(a) 2 Blv (b) Blv (c)
$$\frac{1}{2}$$
 Blv (d) B²l²v²

- 42. If the reflected ray is rotated by an angle of 40 in anti-clockwise direction, then the mirror was rotated by(a) 20 is entirely belowing direction.
 - (a) 2θ in anti-clockwise direction
 - (b) 4θ in anti-clockwise direction
 - (c) 2θ in clockwise direction
 - (d) 4θ in clockwise direction
- **43.** An object is placed at a distance of 30 cm from a concave mirror and its real image is formed at a distance of 30 cm from the mirror. The focal length of the mirror is

(a) -15cm (b) -45cm (c) -30cm (d) -20cm

44. The refractive index of a certain glass is 1.5 for light whose wavelength in vacuum is 6000 Å^{0} . The wavelength of this light when it passes through glass is

(a) 4000
$$\stackrel{0}{A}$$
 (b) 6000 $\stackrel{0}{A}$ (c) 9000 $\stackrel{0}{A}$ (d) 15000 $\stackrel{0}{A}$

- **45.** Absolute refractive indices of glass and water are $\frac{3}{2}$ and $\frac{4}{3}$. The ratio of velocities of light in glass and water will be (a) 4 : 3 (b) 9 : 8 (c) 8 : 9 (d) 3 : 4
- **46.** The critical angle of a prism is 30^o. The velocity of light in the medium is

(a)
$$1.5 \times 10^8 \,\mathrm{m/s}$$
 (b) $3 \times 10^8 \,\mathrm{m/s}$

- (c) 4.5×10^8 m/s (d) None of the above
- **47.** The critical angle of a prism is 30°. The velocity of light in the medium is
 - (a) $1.5 \times 10^8 \text{ m/s}$ (b) $3 \times 10^8 \text{ m/s}$
 - (c) 4.5×10^8 m/s (d) None of the above
- 48. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm. The power of combination is
 (a) -1.5D
 (b) -6.5D
 (c) +6.5D
 (d) +1.5D
- 49. A plano-convex lens of curvature of 30 cm and refractive index 1.5 produces a real image of an object kept 90 cm from it. What is the magnification?
 (a) 4 (b) 0.5 (c) 1.5 (d) 2
- **50.** The momentum of the photon of wavelength 5000 A^0 will be

(a) $1.3 \times 10^{-27} \text{ kg} - \text{ms}^{-1}$ (b) $1.3 \times 10^{-28} \text{ kg} - \text{ms}^{-1}$ (c) $4 \times 10^{-29} \text{ kg} - \text{ms}^{-1}$ (d) $4 \times 10^{-18} \text{ kg} - \text{ms}^{-1}$

4