fly beyond the sky...
ITT-JEE | NEET | Foundation

CLASSROOM CONTACT PROGRAMME

(ACADEMIC SESSION 2023-2024)

Class - XI - NEET - 2023

Test Type: Chapter wise Test
Date: 28/09/2023

SYLLABUS

PHYSICS

Duration of test 60 min and questions Paper contains 50 questions. The maximum marks are 200.

PHYSICS

SECTION - A

1. A stone of mass of 16 kg is attached to a string 144 m long and is whirled in a horizontal circle on a smooth surface. The maximum tension in the string that it can withstand is 16 N . The maximum velocity of revolution that can be given to the stone without breaking it, will be.
(a) $20 \mathrm{~ms}^{-1}$
(b) $16 \mathrm{~ms}^{-1}$
(c) $14 \mathrm{~ms}^{-1}$
(d) $12 \mathrm{~ms}^{-1}$
2. The angle between the two vectors $-2 \hat{i}+3 \hat{j}+\hat{\boldsymbol{k}}$ and $\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}-4 \hat{\boldsymbol{k}}$ is
(a) 45°
(b) 90°
(c) 30°
(d) 60°
3. Consider a vector $\overrightarrow{\boldsymbol{F}}=4 \hat{\boldsymbol{i}}-3 \hat{j}$. Another vector perpendicular to \vec{F} is
(a) $4 \hat{i}+3 \hat{j}$
(b) $6 \hat{i}$
(c) $7 \hat{\boldsymbol{k}}$
(d) $3 \hat{i}-4 \hat{j}$
4. \vec{A} and \vec{B} are two vectors given by $\overrightarrow{\boldsymbol{A}}=2 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}$ and $\overrightarrow{\boldsymbol{B}}=2 \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}}$. The magnitude of the component of \vec{A} along \vec{B} is
(a) $\frac{5}{\sqrt{2}}$
(b) $\frac{3}{\sqrt{2}}$
(c) $\frac{8}{\sqrt{5}}$
(d) $\frac{5}{\sqrt{13}}$
5. The distance of a particle moving on a circle of radius 12 m measured from a fixed point on the circle is given by $s=2 t^{3}$ (in metre). The ratio of its tangential to centripetal acceleration at $t=2 \mathrm{~s}$ is
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) $3: 1$
6. Unit vector perpendicular to vector
$\vec{A}=-3 \hat{i}-2 \hat{j}-3 \hat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{B}}=2 \hat{\boldsymbol{i}}+4 \hat{j}+6 \hat{\boldsymbol{k}}$ both is
(a) $\frac{3 \hat{j}-2 \hat{k}}{\sqrt{13}}$
(b) $\frac{3 \hat{k}-2 \hat{j}}{\sqrt{13}}$
(c) $\frac{-\hat{j}+2 \hat{k}}{\sqrt{13}}$
(d) $\frac{\hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}}{\sqrt{13}}$
7. A particle starts from rest. Its acceleration (a) versus time (t) graph as shown in the figure. The maximum speed of the particle will be

(a) $110 \mathrm{~ms}^{-1}$
(b) $55 \mathrm{~ms}^{-1}$
(c) $550 \mathrm{~ms}^{-1}$
(d) $660 \mathrm{~ms}^{-1}$
8. A person walks up a stalled escalator in 90 s . When he is just standing on the same moving escalator, then he is carried for 60 s . The time it would take him to walk up the moving escalator will be
(a) 27 s
(b) 50 s
(c) 18 s
(d) 36 s
9. A body falling from a high Minaret travels 40 m in the last 2 seconds of its fall to ground. Height of Minaret in metre is (Take, $g=10 \mathrm{~ms}^{-2}$)
(a) 60
(b) 45
(c) 80
(d) 50
10. A particle moving along X-axis has acceleration f, at time t, given $f=f_{0}\left(1-\frac{\boldsymbol{t}}{\boldsymbol{T}}\right)$, where f_{0} and T are constants. The particle at $t=0$ has zero velocity. When $f=0$, the particle's velocity $\left(v_{x}\right)$ is
(a) $\frac{1}{2} f_{0} T$
(b) $f_{0} T$
(c) $\frac{1}{2} f_{0} T^{2}$
(d) $f_{0} T^{-2}$
11. Find the average velocity when a particle complete the circle of radius 1 m in 10 s .
(a) $2 \mathrm{~ms}^{-1}$
(b) $3.14 \mathrm{~ms}^{-1}$
(c) $6.28 \mathrm{~ms}^{-1}$
(d) zero
12. If the velocity of a particle is $v=A t+B t^{2}$, where A and B are constants, then the distance travelled by it between 1 s and 2 s is
(a) $3 A+7 B$
(b) $\frac{3}{2} A+\frac{7}{3} B$
(c) $\frac{A}{2}+\frac{B}{3}$
(d) $\frac{3}{2} A+4 B$
13. A ball thrown vertically upwards after reaching a maximum height h returns to the starting point after a time of 10 s . Its displacement after 5 s is
(a) h
(b) 2 h
(c) 10 h
(d) 20 h
14. A particle starts moving from rest wiith uniform accelereation. It travels a distance x in first 2 s and distance y in the next 2 s . Then,
(a) $y=3 x$
(b) $y=4 x$
(c) $y=x$
(d) $y=2 x$
15. A particle moves along with X-axis. The position x of particle with respect to time t from origin given by $x=b_{0}+b_{1} t+b_{2} t^{2}$. The acceleration of particle is
(a) b_{0}
(b) b_{1}
(c) b_{2}
(d) $2 b_{2}$
16. A car covers the first half of the distance between the two places at $40 \mathrm{kmh}^{-1}$ and another half at $60 \mathrm{kmh}^{-1}$. The average speed of the car is
(a) $40 \mathrm{kmh}^{-1}$
(b) $48 \mathrm{kmh}^{-1}$
(c) $50 \mathrm{kmh}^{-1}$
(d) $60 \mathrm{kmh}^{-1}$
17. The range of projectile is R when the angle of projection is 40°. For the same velocity of projection and range, the other possible angle of projection is
(a) 45°
(b) 50°
(c) 60°
(d) 40°
18. A particle is projected with a velocity v , so that its horizontal range twice the greatest height attained. The horizontal range is
(a) $\frac{4 v^{2}}{5 g}$
(b) $\frac{v^{2}}{g}$
(c) $\frac{v^{2}}{2 g}$
(d) $\frac{2 v^{2}}{3 g}$
19. The velocity of a projectile at the initial point A is $(2 \hat{i}+3 \hat{j}) \mathrm{ms}^{-1}$. Its velocity (in ms^{-1}) at point B is

(a) $-2 \hat{i}-3 \hat{j}$
(b) $-2 \hat{i}+3 \hat{j}$
(c) $2 \hat{\boldsymbol{i}}-3 \hat{\boldsymbol{j}}$
(d) $2 \hat{i}+3 \hat{j}$
20. The velocity vector of the motion described by the position vector of a particle $\vec{r}=2 t \hat{i}+\boldsymbol{t}^{2} \hat{j}$ is given by
(a) $\overrightarrow{\boldsymbol{v}}=2 \hat{i}+2 t \hat{\boldsymbol{j}}$
(b) $\vec{v}=2 t \hat{i}+2 t \hat{j}$
(c) $\overrightarrow{\boldsymbol{v}}=\boldsymbol{t} \hat{\boldsymbol{i}}+\boldsymbol{t}^{2} \hat{j}$
(d) $\vec{v}=2 \hat{i}+t^{2} \hat{j}$
21. A body is projected with an angle θ. The maximum height reached is h. If the time of flight is 4 s and $\mathrm{g}=10 \mathrm{~ms}^{-2}$, then value of h is
(a) 40 m
(b) 20 m
(c) 5 m
(d) 10 m
22. The equation of motion of a projectile is

$$
y=12 x-\frac{3}{4} x^{2}
$$

What is the range of projectile?
(a) 12 m
(b) 16 m
(c) 20 m
(d) 24 m
23. A large number of bullets are fired in all directions with same speed v. What is the maximum area on the ground on which these bullets will spread?
(a) $\pi \frac{v^{2}}{g}$
(b) $\pi \frac{v^{4}}{g^{2}}$
(c) $\pi^{2} \frac{v^{4}}{g^{2}}$
(d) $\pi^{2} \frac{v^{2}}{g^{2}}$
24. When a force F acts on a body of mass m, the acceleration produced in the body is a. If three equal forces $\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{3}=\mathrm{F}$ act on the same body as shown in figure. The acceleration produced is

(a) $(\sqrt{2}-1) \boldsymbol{a}$
(b) $\overline{(} \sqrt{2}+1) a$
(c) $\sqrt{2} a$
(d) a
25. In the arrangement shown, the mass m will ascend with an acceleration (pulley and rope are massless)

(a) zero
(b) $\frac{g}{5}$
(c) g
(d) 2 g
26. In the figure given below, with what acceleration does the block of mass m will move? (Pulley and strings are massless and frictionless)

(a) $\frac{g}{3}$
(b) $\frac{2 g}{5}$
(c) $\frac{2 g}{3}$
(d) $\frac{g}{2}$
27. A block of weight 5 N is pushed against a vertical wall by a force 12 N . The coefficient of friction between the wall and block is 0.6 . The magnitude of the force exerted by the wall on the block is

(a) 12 N
(b) $5 N$
(c) 7.2 N
(d) 13 N
28. A rope of length L and mass M is hanging from a rigid support. The tension in the rope at a distance x from the rigid support is
(a) Mg
(b) $\left(\frac{L-x}{L}\right) M g$
(c) $\left(\frac{L}{L-x}\right) M g$
(d) $\frac{x}{L} M g$
29. Two blocks A and B of masses 3 m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a masselss spring as shown in figure. The magnitudes of accelereation of A and B immediately after the string is cut, are respectively

(a) $g \frac{g}{3}$
(b) $\frac{g}{3}, g$
(c) g, g
(d) $\frac{g}{3}, \frac{g}{3}$
30. A body of mass m is placed on a rough surface with coefficient of friction μ inclined at θ. If the mass is in equilibrium, then
(a) $\theta=\tan ^{-1} \mu$
(b) $\theta=\tan ^{-1}\left(\frac{1}{\mu}\right)$
(c) $\theta=\tan ^{-1} \frac{m}{\mu}$
(d) $\theta=\tan ^{-1} \frac{\mu}{m}$
31. A marble block of mass 2 kg lying on ice when given a velocity of $6 \mathrm{~ms}^{-1}$ is stopped by friction in 10 s . Then, the coefficient of friction is
(a) 0.01
(b) 0.02
(c) 0.03
(d) 0.06
32. A balloon with mass m is desending down with an acceleration a (where, $\mathrm{a}<\mathrm{g}$). How much mass should be removed from it, so that it starts moving up with an acceleration a ?

(a) $\frac{2 m a}{g+a}$
(b) $\frac{2 m a}{g-a}$
(c) $\frac{m a}{g+a}$
(d) $\frac{m a}{g-a}$
33. Two particles of equal masses are revolving in circular paths of radii r_{1} and r_{2} respectively with the same speed. The ratio of their centripetal forces is
(a) $\frac{r_{2}}{r_{1}}$
(b) $\sqrt{\frac{r_{2}}{r_{1}}}$
(c) $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
(d) $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
34. A fan makes 2400 rpm . If after it is switched off, it comes to rest in 10 s , then find the number of times it will rotate before it comes to rest after it is switched off.
(a) 400
(b) 100
(c) 200
(d) 50
35. The momentum p (in $\mathrm{kg}-\mathrm{ms}^{-1}$) of a particle is varying with time t (in second) as $p=2+3 t^{2}$. The force acting on the particle at $t=3 \mathrm{~s}$ will be.
(a) 18 N
(b) 54 N
(c) 9 N
(d) 15 N

SECTION -B

36. Find the resultant of three vectors OA, OB and OC shown in the following figure. (Radius of the circle is R)

(a) $2 R$
(b) $\boldsymbol{R}(1+\sqrt{2})$
(c) $R \sqrt{2}$
(d) $R(\sqrt{2}-1)$
37. A vector perpendicular to both the vectors $2 \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+5 \hat{\boldsymbol{k}}$ and X-axis is
(a) $\hat{j}+5 \hat{j}$
(b) $\hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
(c) $5 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$
(d) $\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$
38. The scalar product of two vectors $\vec{A}=2 \hat{i}+2 \hat{j}-\hat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{B}}=-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$, is given by
(a) $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=3$
(b) $\vec{A} \cdot \overrightarrow{\boldsymbol{B}}=4$
(c) $\vec{A} \cdot \vec{B}=-4$
(d) $\vec{A} \cdot \vec{B}=-3$
39. The distance travelled by a particle starting from rest and moving with an acceleration $\frac{4}{3} m s^{-2}$, in the third second is
(a) $\frac{10}{3} m$
(b) $\frac{19}{3} m$
(c) 6 m
(d) 4 m
40. Figure given shows the distance-time graph of the motion of a car. It follows from the graph that the car is

(a) at rest
(b) in uniform motion
(c) in non-uniform accelerated motion
(d) uniformly accelerated motion
41. A car moving with a velocity of $10 \mathrm{~ms}^{-1}$ can be stopped by the application of a constant force F in a distance of 20 m . If the velocity of the car is 30 ms^{-1}. It can be stopped by this force in
(a) $\frac{20}{3} m$
(b) 20 m
(c) 60 m
(d) 180 m .
42. Figure shows four paths for a kicked football. Ignorning the effects of air on the flight, rank the paths according to initial horizontal velocity component highest first.

(a) $1,2,3,4$
(b) $2,3,4,1$
(c) $3,4,1,2$
(d) $4,3,2,1$
43. A body projected with velocity u at projection angle θ has horizontal range R. For the same velocity and projection angle, its range on the moon surface will be $\left(g_{\text {moon }}=g_{\text {earth }} / 6\right)$
(a) 36 R
(b) $\frac{R}{36}$
(c) $\frac{R}{16}$
(d) $6 R$
44. A body is projected at an angle of 30° with the horizontal with momentum p. At its highest point, the magnitude of the momentum is
(a) $\frac{\sqrt{3}}{2} p$
(b) $\frac{2}{\sqrt{3}} p$
(c) p
(d) $\frac{p}{2}$
45. A man of mass m has fallen into a ditch of width d. Two of his friends are slowly pulling him out using a light rope and two fixed pulleys as shown in figure. Both the friends exert force of equal magnitudes F. When the man is at a depth h, the value of F is

(a) $\frac{m g}{4 h} \sqrt{d^{2}+4 h^{2}}$
(b) hmg
(c) dmg
(d) $\frac{m g}{2 h} \sqrt{h^{2}+d^{2}}$
46. A mass M is hung with a light inextensible string as shown in the figure. Find the tension of the horizontal string.

(a) $\sqrt{2} M g$
(b) $\sqrt{3} M g$
(c) 2 Mg
(d) 3 Mg
47. Three blocks with masses $\mathrm{m}, 2 \mathrm{~m}$ and 3 m are connected by strings as shown in the figure. After an upward force F is applied on block m, the masses move upward at contant speed v. What is the net force on the block of mass 2 m ? (g is the acceleration due to gravity)

(a) Zero
(b) 2 mg
(c) 3 mg
(d) 6 mg
48. A car is moving in a circular horizontal track of radius 10.0 m with a constant speed of $10.0 \mathrm{~ms}^{-1}$. A plumb bob is suspended from the roof of the car by a light rigid rod of length 10.0 m . The angle made by the rod with the track is (Take, $\mathrm{g}=10$ ms^{-2})
(a) zero
(b) 30°
(c) 45°
(d) 60°
49. The ratio of angular speed of second hand to the hour-hand of a watch is
(a) $3600: 1$
(b) $720: 1$
(c) $72: 1$
(d) $60: 1$
50. A car of mass 1000 kg negotiates banked curve of radius 90 m on a frictionless road. If the banking angle is 45°, the speed of the car is
(a) $20 \mathrm{~ms}^{-1}$
(b) $30 \mathrm{~ms}^{-1}$
(c) $5 \mathrm{~ms}^{-1}$
(d) $10 \mathrm{~ms}^{-1}$
