

In the following reaction, CH₃ H20/H+ -CH=CH, CH3-Major Minor CH. product product The major product is CH_3 CH₃-C-CH-CH₃ OH CH. (a) CH₃ C-CH₂ - CH₃ CH2-ЮН CH₃ (b) CH₃ СН₃ — С — С Н—СН₃ CH, OH (c) CH₃ $CH_3 - C - CH_2 - CH_2$ CH₁ (d) $H_3C \longrightarrow CH \longrightarrow CH \longrightarrow CH_2 + HBr \longrightarrow A$ CH₁ A (predominantly) is $\mathrm{CH}_3 - \mathrm{CH} - \mathrm{CH}_2 - \mathrm{CH}_2 \mathrm{Br}$ CH₃ (a) Br CH₃ - CH₂CH₂CH₃ CH₃ (b) $\begin{array}{c} CH_{3}-CH-CH-CH_{3}\\ |\\ Br \\ CH_{3}-CH-CH-CH_{3} \end{array}$ (c) CH₃ Br (d) What is the value of K_c if K_b and k_f are 1.2×10^{-3} and 1.4×10^{-2} respectively? (a) 11.66 (b) 0.88 (c) 1.166 (d) 8.8 Calculate K_c for the reversible process given below if $K_p = 167$ and $T = 800^{\circ}C$. $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ (b) 1.85 (c) 1.89 (a) 1.95 (d) 1.60

2

23.	Maximum numbers of electrons in a subshell is									
	given by: (a) $(2l + 1)$ (b) $2(2l + 1)$									
	(a) $(2l+1)^2$ (c) $(2l+1)^2$	(d) $2(2l+1)^2$								
24.	The 3d – orbitals having electron density in all the three axes is:									
	(a) $3d_{xy}$ (b) $3d_{z^2}$	(c) $3d_{yz}$ (d) $3d_{zx}$								
25.	The number of nodes in (a) 0 (b) 1	n a 4d – orbital is: (c) 2 (d) 3								
26.	Number of electrons present in 6 g of CO_3^{2-} is.									
	(a) 1.806×10 ²⁴	(b) 1.9264×10 ²⁴								
	(c) 3.7324×10^{24}	(d) None of these								
27.	20 moles of A and 14 and allowed to re equation. $A + 2B \rightarrow 3C$ What is the maximum	4 moles of B are mixed act according to the number of moles of C								
	which could be prepar (a) 14 (b) 21	red? (c) 13 (d) 7								
28.	The empirical formula and molecular mass of a compound are CH ₂ O and 180 g respectively What will be the molecular formula of the compound?									
	(a) $C_9H_{18}O_9$ (c) $C_6H_{12}O_6$	(b) CH_2O (d) $C_2H_4O_2$								
29.	For the reaction $A + 2B \rightarrow C$, 5 mol of A and 8									
	(a) 5 mole of C	(b) 4 mole of C								
	(c) 8 mole of C	(d) 13 mole of C								
30.	Which of the following contains the least									
	(a) 4.4 g CO_2	(b) 3.4 g NH ₃								
	(c) 1.6 g CH ₄	(d) $3.2 \text{ g } \text{SO}_2$								
31.	Which of the following species are hypervalent?									
	1. CIO_4^- 2. BF_3	3. SO_4^{2-} 4. CO_3^{2-}								
	(a) 1, 2, 3 (b) 1, 3	(c) 3, 4 (d) 1, 2								
32.	An ionic bond $A^+ + B^-$ is most likely to be formed when (a) the ionization energy of A is high and the									
	(b) the ionization energy of A is low and the electron affinity of B is high									
	(c) the ionization energy of A and the electron									
	(d) the ionization energy of A and the electron affinity of B is low.									

3

33.	The corret order of the increasing ionic character is. (a) $BeBr_2 < MgBr_2 < CaBr_2 < BaBr_2$ (b) $BeBr_2 < MgBr_2 < BaBr_2 < CaBr_2$ (c) $BeBr_2 < BaBr_2 < MgBr_2 < CaBr_2$ (d) $BaBr_2 < MgBr_2 < CaBr_2 < BeBr_2$			 Which one of the following does not have intermolecular H - bonding? (a) H₂O (b) o - nitro phenol (c) HF (d) CH₃COOH Among the following species, which has the minimum bond length? 						
34.	SnCl4 is a covalent liqui	id because.		(a) B ₂	(b) C ₂	(0	c) F ₂	(d) O_2^2	2	
	 (a) Electron clouds of the <i>Cl⁻</i> ions are weakly polarized to envelop the cation (b) Electron clouds of the <i>Cl⁻</i> ions are strongly polarized to envelop the cation (c) Its molecules are attracted to one another by strong van der Waals forces 			Which of the following have bond order three?						
				(a) O_2^+	(b) NO^+	· · · · ·	CN^{-}	(d) <i>(</i> 1)	N^+	
				In PO_4^{3-} ion the formal charge on the oxygen atom of P – O bond is.						
	(d) Sn shows inert pair	effect.		(a) + 1	(b) – 1	(0	c) – 0.75	(d) + ().75	
35.	NH_3 and BF_3 combine readily because of the formation of: (a) a convolute hand (b) a hydrograp hand			Number of π bonds and σ bonds in Napthalene is. (a) 6, 19 (b) 4, 20 (c) 5, 19 (d) 5, 20						
	(c) a coordinate bond	(d) an ionic bond		(u) 0, 1)	(0) 1, 20	(.) 0, 17	(u) 0, 2	20	
	(c) a coordinate cond SECT	47.	47. The molecular formula of the conformed from B and C will be.							
36.	Which of the followir increasing order of size	ng has been arranged in of the hybrid orbitals?		(a) BC	(b) B ₂ C	(0	c) BC ₂	(d) B ₄	C ₃	
	(a) $sp < sp^2 < sp^3$	(b) $sp^3 < sp^2 < sp$	48.	Which one of the following is the correct of interactions?						
	(c) $sp^2 < sp^3 < sp$	(d) $sp^2 < sp < sp^3$		(a) Cova Waal	< vande	r				
37.	Consider the following molecules:			 (b) Vander Waals < hydrogen bonding < dipole - dipole< covalent (c) Vander Waals < dipole - dipole < hydrogen bonding < covalent 						
	H_2O H_2S H_2Se H_2Te									
	I II III IV									
	Arrange these molecules in increasing order of bond angles			(d) Dipole - dipole < vander Waals						
	(a) $I < II < III < IV$		< hydrogen bonding < cavalent							
	(c) $I < II < IV < III$	(d) $II < IV < III < I$	49	49 Match the columns						
38	For BE ₂ molecules which of the following is				Column – I		Co	lumn – I	I	
50.	true?	filer of the following is		A B	eH ₂	(p)	Odd el	ectron		
	(a) B – atom is sp^2 hyl	bridised		D C	E	(~)	m Europa	olecules		
	(b) There is a $P\pi - P\pi$	back bonding in this		D. 5.	г <u>6</u> JO2	(\mathbf{q})	Incomr	olete octe	et of	
	(c) Observed $B - F$ bo	nd length is found to be				(-)	ce	ntral ato	m	
	less than the expected bond length			(a) A – (p	(a), B - (q), C	- (r)				
	(d) All of these			(b) A – (q	(), B - (r), C - (r), C - (r)	- (p)				
39.	Of the following molecules, the one, which has permanent dipole moment, is. (a) SiE ₄ (b) BE ₃ (c) PE ₃ (d) PE ₅			(c) $A = (r)$ (d) $A = (r)$), B = (q), C ·), B = (p), C ·	- (p) - (a)				
	$(u) \operatorname{OH}_4 (b) \operatorname{OH}_3$	(c) 113 (d) 113	50.	Assertion	1: Shape of N	√H₃ n	nolecule	is tetrah	edral.	
40.	Which of the following has the least dipole			(a) Asser	In NH3 nitro	gen 19	s sp ⁵ hyt	orrect: r	eason	
	moment?		(a) Assertion is correct, reason is correct, reason(b) Assertion is correct, reason is correct; reason							
	$(a) 1 N \Gamma_3 (b) C O_2$									
41.	Which of the following is least volatile? (a) HF (b) HCl (c) HBr (d) HI			is not	a correct ex	plana	ation for	assertion	n	
				(c) Assertion is correct, reason is incorrect (d) Assertion is incorrect, reason is correct						

4