NEET

OFFICE & CLASSES: SKY TUTORIALS : KABIR NAGAR DURGAKUND, VARANASI CONTACT No.: 7510020006, 9696571381

fly beyond the sky...

SSROOM CONTACT PROGRAM

(ACADEMIC SESSION 2023 - 2024)

Pulse Batch – Neet

Test Type - TOPIC WISE TEST

Test Date: 03/09/2023

ANSWER KEY																				
	·													 []						
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	В	C	В	Α	D	C	C	D	В	C	В	Α	В	Α	Α	Α	В	Α	Α
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	Α	В	Α	В	D	В	D	D	D	С	В	С	D	С	Α	С	В	D	В	С
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	В	С	С	В	С	В	D	D	В	В	С	В	D	В	В	Α	D	В	С	D
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	Α	С	Α	D	С	Α	С	Α	В	D	В	D	D	D	В	Α	В	В	С	*
Que.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	С	С	Α	С	Α	Α	Α	Α	С	В	В	В	С	С	С	В	В	Α	В	В
Que.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	С	В	D	С	С	В	D	С	С	В	В	Α	D	С	D	Α	Α	Α	Α	Α
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	В	С	D	В	С	В	В	В	Α	В	Α	Α	Α	С	В	D	С	В	С	В
Que.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	Α	D	Α	D	В	D	В	С	D	D	D	В	Α	D	С	В	В	Α	В	D
Que.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	A	В	D	В	D	В	Α	D	С	В	С	С	С	С	С	С	D	С	В	С
Que.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans.	Α	D	D	Α	Α	В	С	В	С	D	Α	С	D	Α	С	Α	Α	Α	С	В

03.09.2023

PHYSICS 1. Ans. (b) V = u - gtO = 20 - 10t $t = 2 \sec \theta$ So total time of flight = 2t $= 2 \times 2 = 4$ sec. 2. Ans. (b) Using $v^2 = u^2 - 2$ as with final velocity = 0 $\therefore s \propto u^2$ $\frac{8}{s^2} = \left(\frac{30}{60}\right)^2$ $\therefore s_2 = 32m$ 3. Ans. (c) $S_1 = S_{10} = 1 / 2 \times a \times 10^2 - 1 / 2(10)^2$ So $S_2 = 3S_1$ 4. Ans.(b) Here, $x_2 = 30$ m, $x_1 = 10$ m, $t_2 = 7$ s, $t_1 = 5$ Average velocity between 5s and 7s i.e., $v = \frac{x_2 - x_1}{t_2 - t_1} = \frac{30.0 - 10.0}{7 - 5}$ $=\frac{200}{2}=10\,ms^{-1}$ 5. Ans. (a) A particle thrown upward is an example of motion under gravity. Through the motion of the particle A = -g = constantSince, acceleration is negative, slope of v – t graph must be negative 6. Ans. (d) Given, $x = 8 + 12t - t^3$ We know $v = \frac{dx}{dt}$ And acceleration $a = \frac{dv}{dt}$ So, $v = 12 - 3t^2$ and a = -6tAt t = 2sv = 0 and $a = -6 \times 2$ $a = 12 \text{ ms}^{-2}$ 7. Ans. (c) Suppose velocity at mid point is V a v → H → B S → S → S $V^2 = u^2 + 2as$ $V^2 = V^2 + 2as$ $V^2 - v^2 = u^2 - V^2$ $2V^2 = u^2 + v^2$ $V^2 = u^2 + v^2$ $V = \sqrt{\frac{1}{2}(u^2 + v^2)}$

8. Ans. (c) Motion from A to B $s = ut + \frac{1}{2}at^2$ $100 = 4u + \frac{1}{2}a(4)^2 = 4u + 8a$ 25 = u + 2a(i) Motion from A to C $s = ut + \frac{1}{2}at^2$ $220 = 6u + \frac{1}{2}a(6)^2 = 6u + 18a$ 110 = 3u + 9a(ii) On solving eqn. (i) and (ii) $a = \frac{35}{2}ms^{-2}, u = \frac{5}{2}ms^{-1}$ Agin, v = u + a $=\frac{5}{3}+\frac{35}{3}\times 8=\frac{5+280}{3}=\frac{285}{3}=95ms^{-1}$ 9. $2ax = (50)^2 - (10)^2$ and $2(-a)(-x) = v^2 - (50)^2$ This gives $v^2 - (50)^2 = (50)^2 - (10)^2$ i.e. $v = 70 \text{ ms}^{-1}$ 10. Ans. (b) $I = \frac{1}{2}at^2$ or $t \propto \sqrt{I}, t' \propto \sqrt{\frac{1}{2}}$ $\frac{t'}{t} = \frac{1}{\sqrt{2}}$ or $t' = \frac{1}{\sqrt{2}} = \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = 2\sqrt{2}$ sec. 11. Ans. (c) Given, $\vec{R}_1 = \vec{A} + \vec{B}$ and $\vec{R}_2 = \vec{A} - \vec{B}$ $R_1^2 + R_2^2 = A^2 + B^2 + 2AB\cos\theta + A^2 + B^2 - 2AB$ $\cos\theta$ $=2(A^{2}+B^{2})$ 12. Ans. (b) $|\vec{A} + \vec{B}|^2 = n^2 |\vec{A} - \vec{B}|^2 \Rightarrow |A + B| = n |\vec{A} - \vec{B}|$ $= A^2 + B^2 + 2AB \cos \theta = n^2A^2 + n^2B^2 - 2n^2AB \cos \theta$ $= A^{2} + A^{2} + 2A^{2} \cos \theta = n^{2}A^{2} + n^{2}A^{2} - 2n^{2}A^{2} \cos \theta$ $= A^{2} [2 + 2\cos \theta] = A^{2} [2n^{2} - 2n^{2}\cos\theta]$ $= 2 - 2n^2 = (-2 - 2n^2) \cos \theta$ $=\cos\theta = \frac{1-n^2}{-1-n^2} = \frac{n^2-1}{n^2+1}$ $\Rightarrow \theta = \cos^{-1} \left(\frac{n^2 - 1}{n^2 + 1} \right)$ 13. Ans.(a) $\sin\beta = \frac{C}{R} = \frac{B}{2R} = \frac{1}{2}$ $\beta = 30^\circ = \frac{\pi}{6}$

03.09.2023

14. Ans. (b) $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2$ $A^{2}B^{2}\sin^{2}\theta + A^{2}B^{2}\cos^{2}\theta$ $A^{2}B^{2}(\sin^{2}\theta + \cos^{2}\theta)$ $= A^2 B^2$ 15. Ans. (a) $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 2 & -4 \\ -1 & 2 & 1 \end{vmatrix} = 10\hat{i} + 7\hat{j} - 4\hat{k}$ $|\bar{A} \times \bar{B}| = \sqrt{100 + 49 + 16} = \sqrt{165}$ So, Area of $\Delta = \frac{|\vec{A} \times \vec{B}|}{2} = \frac{\sqrt{165}}{2}$ 16. Ans. (a) Here, $v(x) = 3x^2 - 4x$ $a = v \frac{dv}{dx} = (3x^2 - 4x) \times \frac{dv}{dx}$ $= (3x^2 - 4x) \times (6x - 4)$ 17. Ans. (a) $h = -ut + \frac{1}{2}gt^2$ $=-29 \times 10 + \frac{1}{2} \times 10 \times 100 = 210 m$ 18. Ans. (b) Time taken by the same ball to return to the hands of the juggler is $\frac{2u}{g} = \frac{2 \times 20}{10} = 4s$. So he is throwing the balls after 1s each. Let at some instant he throws ball number 4. Before 1s of throwing it, he throws ball3. So the height of ball 3 is $h_3 = 20 \times 1 - \frac{1}{2}10(1)^2 = 15m$ Before 2s, he throws ball 2. So the height of ball 2 is $h_2 = 20 \times 2 - \frac{1}{2}10(2)^2 = 20m$ Before 3s, he throws ball 1. So the height of ball 1 is $h_1 = 20 \times 3 - \frac{1}{2}10(3)^2 = 15m$

19. Ans. (a)

$$u = \frac{1}{2}g(t_{1} + t_{2})$$

$$u = \frac{1}{2} \times 10 \times (10) = 50m / s$$
20. Ans. (a)

$$v = \alpha \sqrt{x} \cdot \frac{dx}{dt} = \alpha \sqrt{x} \Rightarrow \frac{dx}{\sqrt{x}} = \alpha dt$$

$$\int_{0}^{x} \frac{dx}{\sqrt{x}} = \alpha \int_{0}^{t} dt \Rightarrow \left[\frac{2\sqrt{x}}{1}\right]_{0}^{x}$$

$$-\alpha [t]_{0}^{1} \Rightarrow 2\sqrt{x} - \alpha t \Rightarrow x - \frac{\alpha^{2}}{4}t^{2}$$
21. Ans. (a)

$$\mathbf{a} = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{S}^{2}}$$

$$\sqrt{\frac{dv}{ds}} = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{S}^{2}}$$

$$\int \mathbf{v} \, d\mathbf{v} = \int \left(\mathbf{A} + \frac{\mathbf{B}}{\mathbf{S}^{2}}\right) d\mathbf{s}$$

$$\left[\frac{v^{2}}{2}\right]_{0}^{\mathbf{V}} = \left[\mathbf{A}\mathbf{S} - \frac{\mathbf{B}}{\mathbf{S}}\right]_{1}^{t_{0}}$$

$$\frac{V^{2}}{2} = 9\mathbf{A} + \frac{9\mathbf{B}}{10} \Rightarrow \sqrt{18\left(\mathbf{A} + \frac{\mathbf{B}}{10}\right)}$$
22. Ans. (b)

2

Distance is scalar quantity when displacement is zero then distance may or not be zero.

Ans. (a) 23.

$$s_{1} = \frac{1}{2}a(p-1)^{2}$$

$$s_{1} = \left(\frac{1}{2}ap^{2} + \frac{1}{2}a - ap\right)$$

$$s_{2} = \frac{1}{2}ap^{2}$$

$$s_{(p^{2}-p+1)^{th}} = \frac{1}{2}a\left[2(p^{2}-p+1)-1\right]$$

$$= \left(ap^{2} + \frac{1}{2}a - ap\right)$$

$$\therefore s_{(p^{2}-p+1)^{th}} = s_{1} + s_{2}$$

24. Ans. (b)

$$a = \frac{slope}{2}, a = \frac{(-8)}{2} \Rightarrow a = -4m / s^2$$

03.09.2023

25. Ans. (d) $a = v \frac{dv}{dx}$ $a = 10\left(-\frac{2}{3}\right)$ $a = -\frac{20}{3}m/s^{2}$ 26. Ans. (b) After 3 sec velocity & height of parachutist $v = -u + gt = -10 + 10 \times 3 = 20m / s$ $h' = -ut + 1 / 2gt^2 = 15$ So height from ground 30 m using $h = ut - 1 / 2at^2$, $30 = 20t - 1 / 2 \times 5t^2$ $5t^2 - 40t - 60 = 0$, $t^2 - 8t + 12 = 0$ (t-2)(t-6)=0 $T = 2 \sec \theta$ \therefore Total time = 3 + 2 = 5 sec 27. Ans. (d) $\overline{v} = \frac{s}{\frac{2}{5}\frac{s}{v_1} + \frac{3}{5}\frac{s}{v_2}} = \frac{5v_1v_2}{3v_1 + 2v_2}$ 28. Ans. (d) v = u - gt $0 = u - 10 \times 2$ u = 20 m / s29. Ans. (d) $R = \frac{u^2 \sin 2\theta}{g}$ Max Range = $\frac{u^2}{\sigma}$ $A = \pi R^2$ $A \propto R^2$ $A \propto u^4$ $\frac{A_1}{A_2} = \frac{u_1^4}{u_2^4} = \left[\frac{1}{2}\right]^4 = \frac{1}{16}\frac{A_1}{A_2} = \frac{u_1^4}{u_2^4} = \left[\frac{1}{2}\right]^4 = \frac{1}{16}$ 30. Ans. (c) Range will be same for time t_1 and t_2 , so angles of projection will be θ and 90° - θ $t_1 = \frac{2u\sin\theta}{g}t_2 = \frac{2u\sin(90^\circ - \theta)}{g}$ And $R = \frac{u^2 \sin 2\theta}{\alpha}$ $t_1 t_2 = \frac{4u^2 \sin \theta \cos \theta}{g^2} = \frac{2}{g} \left[\frac{2u^2 \sin \theta \cos \theta}{g} \right] = \frac{2R}{g}$ 31. Ans. (b) For same range angle of projection will be θ & 90 – θ $R = \frac{u^2 2 \sin \theta \cos \theta}{1 + 1 + 1 + 1 + 1}$ g

$$h_{1} = \frac{u^{2} \sin^{2} \theta}{2g}$$

$$h_{2} = \frac{u^{2} \sin^{2}(90 - \theta)}{2g}$$

$$\frac{R^{2}}{h_{1}h_{2}} = 16$$
32. Ans. (c)
33. Ans. (d)
34. Ans. (c)
35. Ans. (a)
Let the components of \overline{A} makes angles α,β and γ with x, y and z axis respectively then $\alpha = \beta = \gamma$
 $\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$
 $3 \cos^{2} \alpha = 1 \Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$
 $A_{x} = A_{y} = A_{z} = A \cos \alpha \frac{A}{\sqrt{3}}$
36. Ans. (c)
$$B \sqrt{\theta} \sqrt{\theta} \sqrt{\theta}$$
37. Ans. (b)
Velocity of girl $V_{s} = 5\hat{i}$
Let velocity of rain in given by vector,
 $v_{r} = v_{x}\hat{i} + v_{y}\hat{j}$
Now, it is vertical so $\tan \theta = \frac{v_{x} - 5}{v_{y}} = 0$
 $\Rightarrow v_{x} - 5 = 0 \Rightarrow v_{x} = 5$
On increasing the speed of the girl,
Relative velocity becomes $(v_{x} - 15)\hat{i} + v_{y}\hat{j}$
 $\tan \theta = \tan 45^{\circ} = \frac{v_{x} - 15}{v_{y}} = 1 \Rightarrow v_{x} - 15 = v_{y}$
 $\Rightarrow v_{y} = -10$.
 \therefore velocity of rain $= 5\hat{i} - 10\hat{j}$
 \therefore Magnitude of velocity of rain
 $= \sqrt{(5)^{2} + (10)^{3}} = \sqrt{125} = 5\sqrt{5} \text{ ms}^{-1}$

38. Ans. (d)
Given condition,
$$h_1 = h_2$$

 $\Rightarrow u_1^2 \sin^2 45^\circ = u_2^2 \sin^2 \theta \left[h = \frac{u^2 \sin^2 \theta}{2g} \right]$
 $\Rightarrow \sin^2 \theta = \frac{u_1^2}{u_2^2} \sin^2 45^\circ = \left(\frac{4\sqrt{2}}{5}\right)^2 \times \frac{1}{2} = \frac{16}{25}$
 $\Rightarrow \sin \theta = \frac{4}{5} \Rightarrow \theta = 53^\circ$
39. Ans. (d)
Maximum horizontal range = 80 m
 $\because \theta = 45^\circ m$
 $\because \frac{u^2}{s} = 80m$
Maximum height, $h = \frac{u^2}{2g}$
 $= \frac{80}{2} = 40m$
40. Ans. (c)
When a body is projected at an angle θ with the
horizontal with initial velocity u, then the
horizontal range of projectile is $R = \frac{u^2 \sin 2\theta}{g}$
Clearly, for maximum horizontal range
 $\sin 2\theta = 1 \text{ or } 2\theta = 90^\circ \text{ or } \theta = 45^\circ$. Hence, in order
to achieve maximum range, the body should be
projected at 45°
In this case $R_{\max} = \frac{u^2}{g}$
Hence, ranges of A and C are equal and less than
that of B.
41. Ans. (b)
Let u be the initial speed.
So speed at highest point = $u\cos \theta = \frac{u}{2} \Rightarrow \theta = 60^\circ$
 $\because R = \frac{u^2 \sin 2\theta}{g}$
 $H = \frac{u^2 \sin^2 \theta}{2g} \Rightarrow \frac{R}{H} = \frac{4}{\tan \theta} = \frac{4}{\sqrt{3}}$
42. Ans. (c)
Maximum height, $H = \frac{u^2 \sin^2 \theta}{2g}$
Horizontal range $R = \frac{u^2 \sin^2 \theta}{g}$
Horizontal range $R = \frac{u^2 \sin^2 \theta}{g}$
Dividing, $\frac{H}{R} = \frac{\tan \theta}{4} \Rightarrow \theta = \tan^{-1} \frac{4H}{R}$

43. Ans. (c)
Initial velocity
$$v = 2\hat{i} + \hat{j} \text{ ms}^{-1}$$

Magnitude of velocity,
 $v = \sqrt{(2)^2(1)^2} = \sqrt{5}ms^{-1}$
Equation of trajectory of projectile
 $y = x \tan \theta - \frac{gx^2}{2u^2}(1 + \tan^2 \theta)$
 $\left[\tan \theta = \frac{y}{x} = \frac{1}{2} = \frac{1}{2}\right]$
 $\therefore y = x \times \frac{1}{2} - \frac{10x^2}{2(\sqrt{5})^2} = \left(1 + \frac{1}{4}\right)$
 $y = \frac{x}{2} - \frac{10x^2}{10} \times \frac{5}{4}$
 $4y = 2x - 5x^2$
44. And. (b)
 $\vec{v}_{rg} = \text{velocity of rain w.r.t. ground}$
 $\vec{v}_{rg} = \text{velocity of rain w.r.t. ground}$
 $\vec{v}_{rg} = \text{velocity of rain w.r.t. man}$
 $\vec{v}_{rg} = \vec{v}_{rm} + \vec{v}_{rg} \dots \dots \dots (i)$
Taking horizontal components eqn. (i) gives
 $v_{rg} \sin 30^\circ = v_{rg} = 10 \text{ km/hr}$
 $v_{rg} = \frac{10}{\sin 30^\circ} 20 \text{ km/h}$
45. Ans. (c)
 $v_r = \frac{1}{v_m} = V_r = \frac{0.5}{2} = 0.25 \text{ m/s}$
46. Ans. (b)
Relative velocity of parrot w.r.t. train
 $= 7 - (-8) = 7 + 8 = 15 \text{ m/s}$
time taken by parrot
 $t = \frac{d}{V_{rel}} = \frac{225}{15} = 15 \sec 4$
47. Ans. (d)
 $v_c = 8 \text{ m/s E} = v_{\text{passanger}}$
 $v_{TC} = 15 \text{ m/s N} \quad v_T = ?$
 $w \leftarrow \int_{V_{TC}} = \overline{V_{TC}} + \overline{V_{C}}$

6

54. Answer (b) $Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$ $56 \times 3 = 168 \text{ g}$ 232 g 3 moles of Fe is produced from 1 mole of Fe₃O₄ 168 g of Fe is produced from 232 g of Fe₃O₄ 3 kg of Fe will be produced from $\frac{232}{168} \times 3000 = 4142.8$ g or 4.14 kg of Fe₃O₄ 55. Answer (b) C-12 is used as a standard unit for defining atomic mass unit. 56. Answer (a) Number of moles $\propto \frac{1}{Molecular mass}$ Molecular mass of $CO_2 = 44$, $N_2 = 28$, $CH_4 = 16$, HCl = 36.5CO₂ will have least volume. 57. Answer (d) No. of moles in 34 g of NH₃ = $\frac{34}{17}$ = 2 No. of molecules = $2 \times 6.023 \times 10^{23}$ No. of atoms in one molecule of $NH_3 = 4$ No. of atoms in 2 molecules of NH₃ $= 4 \times 2 \times 6.023 \times 10^{23} = 48.18 \times 10^{23}$ 58. Answer (b) Molar mass of $O_2 = 32 \text{ g mol}^{-1}$ $32 \text{ g of } O_2 = 6.023 \times 10^{23} \text{ molecules}$ 40 g of O₂ = $\frac{6.023 \times 10^{23} \times 40}{32}$ = 7.529 × 10²³ molecules Mass of 6.023×10^{23} molecules of CO₂ = 44 g Mass of 7.529×10^{23} molecules of CO₂ $=\frac{44\times7.529\times10^{23}}{6.023\times10^{23}}=55 \text{ g}$ 59. Answer (c) Since empirical formula is multiplied by n to get molecular formula. CH_2O_2 will give only $C_2H_4O_4$ as its molecular formula. $(CH_2O_2)_n$ where n = 1, 2, 3, ... etc. 60. Answer (d) No. of Mole Whole Element % no. ratio moles ratio 54.2 54.2/12 = 4.5 Ć 4.5/2.3 = 22 Η 9.2 9.2/1 = 9.29.2/2.3 = 44 2.3/2.3 = 10 36.6 36.6/16 = 2.3 1 Empirical formula = C_2H_4O

03.09.2023

84. Answer (c) Fe, Co, Ni, Cu. Due to shielding of *d*-electrons, the effect of increased nuclear charge due to increase in atomic no. neutralised. Consequently atomic radius remains almost unchanged after chromium. 85. Answer (a) X⁻ ion larger in size than X atoms. Because of low effective nuclear charge on X^- , X has a bigger size. **SECTION - B** 86. Answer (a) Mass of $Al_2O_3 = 2 \times 27 + 3 \times 16 = 102$ $0.051 \text{ g of } Al_2O_3 = \frac{0.051}{102} = 0.0005 \text{ mol}$ 1 mol of Al₂O₃ contains $2 \times 6.023 \times 10^{23}$ Al³⁺ ions 0.0005 mol of Al_2O_3 contains $2\times0.0005\times6.023\times10^{23}$ Al³⁺ ions $= 6.023 \times 10^{20} \text{ Al}^{3+}$ ions 87. Answer (a) Relative Simple Element Percentage Molar ratio whole ratio number ratio 21.9 21.9/24 1 2 Mg = 0.91 2 P 27.8 27.8/31 1 = 0.90 7 50.3/16 3.48 0 50.3 = 3.14 Formula of the compound = $Mg_2P_2O_7$ 88. Answer (a) Molar mass of $CuSO_4 = 63.5 + 32 + 4 \times 16$ = 159.5 g Mass of copper present in 159.5 g of $CuSO_4 = 63.5$ g :. Mass of copper present in 50 g of CuSO₄ $=\frac{63.5}{159.5}$ × 50 = 19.90 g 89. Answer (c) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ No. of moles of AgNO₃ = $\frac{3.4}{170}$ = 0.02 No. of moles of NaCl = $\frac{5.85}{58.5} = 0.1$ Limiting reagent = $AgNO_3$ 1 mole of AgNO₃ produces 1 mole of AgCl 0.02 mole of AgNO3 will produce 0.02 mole of AgCl Weight of AgCl produced = $0.02 \times 143.5 = 2.870$ g 90. Answer (b) 91. Answer (b)

No. of moles of NaOH = $\frac{4.28}{0.107}$ = 0.107 40 Volume of solution = 250 cm^3 $M = \frac{n}{V \,\text{in L}} = \frac{0.107}{250} \times 1000 = 0.428 \text{ mol } \text{L}^{-1}$ 92. Answer (b) 2-Formyl-3-oxopentanenitrile 93. Answer (c) CH₂ ${}^{4}_{CH_3} - {}^{1}_{C} - {}^{2}_{CH} = {}^{1}_{CH_2}$ CH₂ 3, 3-Dimethylbut-1-ene 94. Answer (c) $O_2 N^2$ NO₂ 1-Chloro-2,4-dinitrobenzene 95. Answer (c)

$$3$$
-bromo-1-chlorocyclohexene
Br

96. Answer (b)

$$H - C \stackrel{\pi}{\underset{\pi}{=}} C - C \stackrel{\pi}{\underset{\mu}{=}} C - C - H$$

No. of σ -bonds = 10; No. of π -bonds = 3

97. Answer (b) 98. Answer (a)

Ce > Sm > Yb > Lu

99. Answer (b) Value of Z for hydrogen =1 Value of Z for helium = 2Value of n for both is = 1

$$r_{\rm H} = \frac{0.52 \times 1^2}{1} \quad r_{\rm He^+} = \frac{0.52 \times 1^2}{1}$$

 $\frac{r_{\rm H}}{r_{\rm He^+}} = 1:1 \quad \text{or} \quad r_{\rm He^+}: r_{\rm H} = 1:1$

100. Answer (b)

			F	
101	BOTANY		Enzyme of lysosomes	C 1 \cdot 1 1
101.	Ans (c)		Glycosylation of proteins	- Golgi body
	Eukaryotes show intracellular		Protease mediated protein	- Lysosome
	compartmentalization i.e., membrane bound cell		Breakdown	
	organelles.		Maintenance of osmotic	- Vacuole
102.	Ans (2)		Concentration of cell	
	Plasmodesmata form the living component in the	118.	Ans. (a)	
	dead wall, through which the cytoplasm of one		Pumps are proteins that use ener	rgy to carry
	plant cell is in contact with other.		substances across the cell membra	rane.
103.	Ans. (d)	119.	Ans. (a)	
	Centrioles are absent in higher plant cells.		Anaphase is the best stage of cel	l cycle to study
104.	Ans. (c)		shape of the chromosomes.	<i>v</i>
	A special membranous structure is the mesosome	120.	Ans. (a)	
	which is formed by the invagination of the		Several ribosomes when attach t	o a single mRNA
	plasma membrane into the cell. Pill are involved		and form a chain then it is called	l polyribosomes
	in malting process. In the some bacteria, fimbriae		or polysome.	1 5
	helps in attaching the bacteria to the substratum	121.	Ans. (b)	
	Chromatophores (membranous extensions)		Position of centromere can divid	le each
	contain nigments		chromosome into two arms the	smaller one n-
105	Ans (c)		arm and the bigger one g-arm	officialler officip
105.	1 Bivalent = 4 Chromatide (Two sister and two		Sub-metacentric chromosomes a	nnear I shaned
	non sister) or two homologous shromosomos		during anaphaso	ppear L'snapeu
100	hon-sister) or two nomologous chromosomes.	122	Ang (g)	
106.	Ans. (D)	122.	Ans. (c)	topo of propheses
	Rudolf Virchow explained that new cells formed		L la servera d'alestar la servera	tene or prophase
105	from pre-existing cells.		I, known as dictyotene. In oocyte	es of some
107.	Ans. (d)	100	vertebrates it lasts for months or	years.
	Lysosome is a single membrane bound organelle.	123.	Ans. (d)	1 (1.
108.	Ans. (c)		Syncytium is a stage of large nui	nber of nuclei
	Chitinous cell wall is present in fungi.		present in a single cells, this occu	irs when
109.	Ans. (c)		karyokinesis is not followed by o	zytokinesis.
	In some bacteria glycocalyx may be thick a	124.	Ans. (b)	
	tough called capsule.		DNA replicates during interpha	se (s phase)
110.	Ans. (b)	125.	Ans. (c)	
	Cytoplasm is the main arena of cellular activities		Cytokinesis is achieved by the fo	ormation of a
	present in between plasma membrane and		furrow, which moves centripetal	lly in animal cell
	nuclear envelope.		and divides the cell cyloplasm ir	nto two cells.
111.	Ans. (b)	126.	Ans. (b)	
	Diakinesis is marked by terminalisation of the		In plant cell, vacuole is surround	led by tonoplast
	chiasmata.		and can occupy more than 90%	volume of cell.
112.	Ans. (a)	127.	Ans. (b)	
	Mesosomes are the infoldings of cell membrane in		Fimbriae help in attachment of b	acteria with
	bacterial cell, contains the respiratory enzymes		rocks in streams and also to the	host tissues.
	required for respiration. They also help in DNA		Flagella helps in the movement of	of bacterial cell.
	replication	128.	Ans. (b)	
113	Ans (d)		Ulothrix, a green alga, is a eukar	yotic organism.
110.	Synaptonemal complex forms during zygotene	129.	Ans. (a)	
	stage and its dissolution takes place in diplotene		A cell without cell wall is called	protoplast i.e.
	stage and its dissolution takes place in diplotence		plasm membrane + protoplasm.	
11/	Ans(c)	130.	Ans. (b)	
114.	Mombrana protains can be classified as integral		The steps are as follow :	
	and paripharal protoins depending on the asso of		D – Condensation and coiling of	chromatin fibres
	and peripheral proteins depending on the ease of		-Leptotene.	
115	extraction.		A-occurrence of cynapsis-Zygote	ene
115.	Alls. (a) Deformation of real-second		C-Crossing over between homol	090115
	Reformation of nuclear membrane occurs in		chromosomes - Pachytene	
111	telopnase.		B- Appearance of chiasmata – D	inlotene
116.	Ans. (a)	131	Ans (a)	round
4	In prokaryotes genetic material is naked.	1.51.	Fluid nature of plasma membras	no playe ap
117.	Ans. (a)		important rolo in its function	ie plays all
	Formation of precursor of - RET		important role in its functioning	such as in cell

	growth, formation of intercellular junctions		ha
	secretion etc.	158.	A
132.	Ans. (a)		Tl
	SER is the major site for synthesis of lipids.		ps
133.	Ans. (a)	159.	A
	The number of chromosomes remains same		\mathcal{W}
	throughout the interphase but amount of DNA	160.	A
	doubles in S phase.		In
	Thus number of chromosomes in prophase = 12		gi
	Amount of DNA in prophase = 40 pg	161.	A
134.	Ans. (c)		Tl
	In metaphase, spindle fibres attach to		ex
	kinetochores.	162.	A
135.	Ans. (b)		Sţ
	Peroxisomes are associated with photorespiration		os
		163.	A
136.			Tł
137.			si
138.		164.	A
139.			11
140.		165	CC
141.		165.	A
142.			E(
143.		1((De
144. 145		166.	A
145. 146			10
140. 147			10
147.		167	
140.		107.	F
150		168	A
100.	ZOOLOGY	100.	TI
151.	Ans. (d)		m
	The name cnidaria is derived from the cnidoblasts	169.	A
	or cnidocytes (which contain thestinging capsules		Tł
	or nematocysts) present on the tentacles and the		са
	body. Cnidoblasts are used for anchorage,		ar
	defense and for the capture of prey	170.	A
152.	Ans. (b)		Sc
	Those cridarians which exist in both forms exhibit		sk
	alternation of generation (metagenesis) i.e. polyps	171.	A
	produce medusae asexually and medusae from	1 2 2	N
	tehpolyps sexually e.j. obelia	172.	A
153.	Ans. (a)	1 20	E
	Bioluminescence hte properly of living organism	173.	A
154	to emit light is well marked ctenophores.	174	Pa
154.	Ans.(d)	174.	A
	This pathway of water transport is helpfule in		IN
	food gathering, respiratory exchange and removal	175	٥s ۸
155	or waste porifera phylum.	175.	
155.	Aris. (C) Aschalminthyas-Bilataral symmetry	176	A
	Sponge Asymmetrical	170.	Pi
	Echinoderms_ Radical symmetry are present	177.	A
156	Ans. (b)		Ţ
100.	Phylum annelida & artropoda have bilateral		fe
	symmetry are present.		2
157.	Ans. (b)		
	These are primitive multicellular animals and		
	1	1	

10

ave cellular level of organisation. ns.(a) ney are bilaterally symmetrical, triploblastic and eudocoelomate animals. ns. (b) uchereria (Filaria worm), ns.(d) arthopoda respiratory organs are gills, book lls, book lungs or tracheal system. ns. (a) ne body of arthropods is covered by chitinous oskeleton. ns. (b) becialised cells called flame cells help in moregulation and excretion. ns.(d) ney have a central gastro-vascular cavity with a ngle opening, mouth on hypostome. ns.(b) ne body bears eight external rows of ciliated mb plates, which help in locomotion ns.(d) conomically important insects – *Apis* (Honey e), *Bombyx* (Silkworm), *Laccifer* (Lac insect) ns. (b) vascular system which helps ater in comotion, capture and transport of food and spiration. An excretory system is absent. ns. (a) cretion takes place through malpighian tubules ns. (d) ne body of annlida and mollusca have etameric segmentation is present. ns. (c) ne space between the hump and the mantle is lled the mantle cavity in which feather like gills e present ns. (b) ome of the cnidarians, e.g., corals have a eleton composed of calcium carbonate. ns. (c) ereis, Hirudinaria, Ascaris ns. (c) cretory organ is proboscis gland ns. (c) arapodia is present in Nereis ns. (c) ephridia (sing. nephridium) help in moregulation and excretion. ns. (c) *enia*– Organ level of organisation ns. (c) *nctada* (Pearl oyster) ns. (d) ne mouth contains a file-like rasping organ for eding, called radula.

03.09.2023

178.	Ans. (c)						
	Body is covered by a calcareous shell and is						
	unsegmented with a distinct head, muscular foot						
	and visceral hump.						
179.	Ans. (b)						
	The mouth contains a file-like rasping organ for						
	feeding, called radula.						
180.	Ans. (c)						
	Arthropoda are bilaterally symmetrical,						
	segmented and coelomate animals, open						
	circulatory system						
181.	Ans. (a)						
	They are bilaterally symmetrical, triploblastic and						
	pseudocoelomate animals. Alimentary canal is						
	complete with a well developed muscular						
	pharynx.						
182.	Ans. (d)						
100	Saccoyloccus, Hemichordata, Balanoglossus						
183.	Ans. (d)						
	They possess longitudinal and circular muscles						
104	which help in locomotion.						
184.	Ans. (a)						
	Cellular level - Porifera						
	11ssue level - Ctenophora						

- Organ level
- Organ system
- Platyhelminthes
- Mollusca
- 185. Ans. (a)

Correct statement - It is fresh water and Ostia present.

186. Ans. (b)

In porifera fertilization is internal & development is indirect having a larval stage which is morphologicallty distict from the adult.

187. Ans. (c)

Bilateral symmetry

Radial symmetry 188. Ans. (b) Pseudocoelomates Asymmetrical

Metamerism

Diploblastic

- Aschelminthes Porifera
- Annelida
- Coelenterata

189. Ans. (c)

- Fasciola, Wuchereria, Nereis, Hirudinaria
- 190. Ans. (d)
 - They are aquatic, mostly marine, sessile or free-swimming, radially symmetrical animals.
 - Cnidarians exhibit tissue level of organization and are diploblastic.
 - Those cnidarians which exist in both forms exhibit alternation of generation (Metagenesis), i.e., polyps produce medusae from the polyps sexually (e.g., Obelia)
- 191. Ans. (a)
 - Prawn, Scorpion, Locust
- 192. Ans. (c)
 - These are primitive multicellular animals and have cellular level of organisation.
 - Sponges have a water transport or canal system.
 - Choanocytes or collar cells line the spongocoel and the canals
- 193. Ans. (d)
 - Prawn, Honey bee, Bombyx
- 194. Ans. (a)

The body of the aschelminthes is circular in crosssection, hence, the name roundworms. They may be freeliving, aquatic and terrestrial or parasitic in plants and animals. Roundworms have organ-system level of body organisation. They are bilaterally symmetrical, triploblastic and pseudocoelomate animals.

195. Ans. (c)

Sponges have a water transport or canal system 196. Ans. (a)

> Water enters through minute pores (ostia) in the body wall into a central cavity, spongocoel, from where it goes out through the osculum.

Ans. (a) 197.

Bombyx, Apis limulus,

198. Ans. (a)

Limulus	-	King crab
Aedes	-	Mosquitoes
Apis	-	Honey bee
Laccifer	-	Lac insect

199. Ans. (c)

These are bilaterally symmetrical, triploblastic, with organ-system Coelomate level of organization. They possess a post anal tail and a closed circulatory system.

200. Ans. (b)

Those cnidarians which exist in both forms exhibit alternation of generation (Metagenesis), i.e., polyps produce medusae asexually and medusae form the polyps sexually (e.g., Obelia).